
REAL-TIME ONLINE SINGING VOICE SEPARATION FROM
MONAURAL RECORDINGS USING ROBUST LOW-RANK

MODELING

Pablo Sprechmann
University of Minnesota
sprec009@umn.edu

Alex Bronstein
Tel Aviv University

bron@eng.tau.ac.il

Guillermo Sapiro
University of Minnesota
guille@umn.edu

ABSTRACT

Separating the leading vocals from the musical ac-
companiment is a challenging task that appears nat-
urally in several music processing applications. Ro-
bust principal component analysis (RPCA) has been
recently employed to this problem producing very suc-
cessful results. The method decomposes the signal
into a low-rank component corresponding to the ac-
companiment with its repetitive structure, and a sparse
component corresponding to the voice with its quasi-
harmonic structure. In this paper we first introduce a
non-negative variant of RPCA, termed as robust low-
rank non-negative matrix factorization (RNMF). This
new framework better suits audio applications. We
then propose two efficient feed-forward architectures
that approximate the RPCA and RNMF with low la-
tency and a fraction of the complexity of the original
optimization method. These approximants allow in-
corporating elements of unsupervised, semi- and fully-
supervised learning into the RPCA and RNMF frame-
works. Our basic implementation shows several or-
ders of magnitude speedup compared to the exact sol-
vers with no performance degradation, and allows on-
line and faster-than-real-time processing. Evaluation
on the MIR-1K dataset demonstrates state-of-the-art
performance.

1. INTRODUCTION

The leading voice in musical pieces carries valuable
information about the song. A system capable of sep-
arating the singing voice from the music accompani-
ment can be used to facilitate a number of applications
such as music information retrieval, singer identifica-
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tion, or lyric recognition.
Separating the leading singing voice from the mu-

sical background from a monaural recording is very
challenging. Existing approaches can be classified ac-
cording to the level of supervision that they require.
Supervised approaches tend to have a model for either
the musical background, the singing voice, or both,
and in general map the mixture signals onto a feature
space where the separation is performed, e.g. [4, 11,
15, 19]. A common drawback of these methods is the
need to identify the vocal segments beforehand, typi-
cally using features such as the Mel-Frequency Cep-
strum Coefficients (MFCC). Unsupervised approaches
make basic fundamental assumptions requiring no pri-
or training or particular features. For example, in [13]
the authors tackle the separation by extracting the re-
peating background (music) from the non-repeating
foreground (voice). Most relevant for our work is the
method proposed in [9]. The authors model the repet-
itive structure of the accompaniment with a low-rank
linear model, while the singing voice is regarded as
sparse and non-repetitive. The separation is performed
using robust PCA (RPCA) [3], producing state-of-the-
art results. Common drawbacks of unsupervised ap-
proaches include the requirement to observe the whole
audio track to perform the separation and the fact that,
unlike supervised models, the obtained sources might
not follow known characteristics of the signals.

In this paper, we consider the promising results pre-
sented in [9] as a starting point. We first develop an
extension of RPCA in which the low rank model is
represented as a non-negative linear combination of
non-negative basis vectors. This is done following re-
cent results connecting non-convex optimization with
nuclear norm optimization [17,18] (further references
are given in Section 2). As with standard non-negative
matrix factorization (NMF) methods, this new model
is more appropriate to represent audio signals, being
applied to the magnitude of the spectrum. The use of
robust NMF (RNMF) is not restricted to this applica-
tion and the usage in combination with divergences
in lieu of Euclidean distances is straightforward. The
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proposed framework can also be seen as an extension
of the robustification of NMF introduced in [22]; not
only does our model consider a sparse variable ac-
counting for outliers (singing voice), but it also adds
a regularization term that minimizes the rank of the
linear model.

In Section 3 we show that the RPCA and RNMF
frameworks induce an architecture of multi-layer feed-
forward networks designed to approximate the output
of the exact optimization algorithms at a fraction of
their computational cost and with no decrease in per-
formance in our various experiments. Moreover, this
new framework allows to incorporate unsupervised,
semi- and fully-supervised learning into RPCA and
RNMF. In this way, we aim at taking the advantages
of the unsupervised methods while minimizing their
drawbacks via realistic learning. When combined with
learning as here proposed, the obtained networks pro-
duce over 1 dB improvement in the signal-to-distortion
ratio when compared to the optimization-based RPCA
(extensive experimental results are presented in Sec-
tion 4), and, after the offline learning, are computable
online and faster than real time without the need to
observe the whole audio file.

These proposed networks are closely related to the
ones introduced in [6], used to produce meaningful
audio features for music style and gender classifica-
tion [7]. These approaches are examples of recent suc-
cessful efforts in the machine learning community to
produce fast trainable (auto-)encoders of sparse fea-
tures of visual and audio signals (see [5, 16] and ref-
erences therein). While the work in this paper comes
from these ideas, it presents a fundamental difference
in the sense that the proposed networks do not com-
pute features, but perform the full separation of the
singing voice from the musical accompaniment.

2. LOW-RANK SPARSE MODELS

2.1 Robust PCA

Principal component analysis (PCA) is the most widely
used statistical technique for dimensionality reduction.
Its performance is, however, highly sensitive to the
presence of samples not following the assumed model
(subspace); even a single outlier in the data matrix can
render the estimation of the low rank component arbi-
trarily far from the true model. In [3, 21], a very el-
egant remedy was developed for this shortcoming, in
which the low rank matrix is determined as the min-
imizer of a convex program. The basic idea is to de-
compose the data matrix X as X = L + O ∈ Rm×n,
where L is a low rank matrix and O an error matrix
with a sparse number of non-zero coefficients with
arbitrarily large magnitude. RPCA can be solved by

minimizing the convex program

min
L,O
‖L‖∗ + λ ‖O‖1 s.t. X = L + O, (1)

where ‖·‖∗ denotes the matrix nuclear norm, defined
as the sum of the singular values (the convex surro-
gate of the rank), and λ is a positive scalar parameter
controlling the sparsity of the outliers. Several effi-
cient optimization algorithms have been proposed for
solving (1) as, for example, the augmented Lagrangian
approach presented in [12].

When the observations are noisy, the equality con-
straint in (1) no longer holds. The RPCA model can
be reformulated as

min
L,O
‖L‖∗ + λ ‖O‖1 s.t. ‖X− L−O‖2F ≤ ε, (2)

with ‖ · ‖F denoting the Frobenius norm, and ε a pa-
rameter controlling the approximation error [21].

2.2 Robust PCA via non-convex factorization

In this paper, we tackle the RPCA problem by solving
the unconstrained optimization problem

min
L,O

1
2
‖X− L−O‖2F + λ∗ ‖L‖∗ + λ ‖O‖1 . (3)

This formulation is equivalent to (2) in the sense that
for every ε > 0 one can find a λ∗ > 0 such that both
problems admit the same solution. The unconstrained
formulation can be efficiently optimized via proximal
methods as in [3].

In [17] it was shown that the nuclear norm of a ma-
trix can be reformulated as a penalty over all possible
factorizations,

‖L‖∗ = min
U,S

1
2
‖U‖2F +

1
2
‖S‖2F s.t. US = L, (4)

with the minimum achieved via Singular Value De-
composition (SVD) [14]. In (3), neither the rank of
L nor the level of sparsity in O are assumed known
a priori. However, in common applications, it is rea-
sonable to have a rough upper bound, rank(L) ≤ q.
Combining this with (4), we reformulate (3) as the
minimization

min
U,S,O

1
2 ‖X−US−O‖2F +

λ∗
2 (‖U‖2F + ‖S‖2F ) + λ ‖O‖1 (5)

over U ∈ Rm×q , S ∈ Rq×n, and O ∈ Rm×n. This
decomposition reveals interesting structure hidden in
the problem. The low rank component can now be
thought of as an under-complete dictionary U, with q
atoms, multiplied by a matrix S containing the corre-
sponding coefficients for each data vector in X. This
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interpretation brings the RPCA problem close to that
of matrix factorization and sparse coding.

This new factorized formulation drastically reduces
the number of optimization variables from 2nm to
nm+ q(n+m). While problem (5) is no longer con-
vex, it can be shown that any of its stationary points
satisfying ||X−US−O||22 ≤ λ∗, is an optimal solu-
tion of (5) [14]. Thus, the problem can be solved using
alternating minimization or block coordinate schemes,
without the risk of remaining stuck in a local mini-
mum. This redounds in a significant speed-up in the
optimization [18].

2.3 Robust NMF

In many applications, such as spectrogram decompo-
sitions, it desirable to find non-negative factorizations.
This is in the heart of the non-negative matrix factor-
ization paradigm . We now extend (5) to consider the
low rank and the outlier terms to be non-negative,

min
U≥0,S≥0,O≥0

1
2 ‖X−US−O‖2F +

λ∗
2 (‖U‖2F + ‖S‖2F ) + λ ‖O‖1 . (6)

This new formulation is no longer equivalent to (3).
In fact, applying (4) directly to the matrix US, we ob-
tain ÛŜ with the factors Ŝ and Û not being necessar-
ily non-negative. Adding the non-negativity constraint
produces the inequality

||US||∗ ≤
1
2

min
Ŝ≥0,Û≥0

||Û||2F + ||Ŝ||2F. (7)

Thus, the sum of the Frobenius norms of the non-
negative matrices S and U regularizes an upper bound
of the nuclear norm of their product.

Standard NMF is obtained as a particular case by
setting to zero both λ∗ and λ, while the robust ver-
sion of NMF introduced in [22] is obtained when only
λ∗ is selected as zero. In this paper we use RNMF
as stated in (6), however its extension to more general
fitting terms such as β-divergences is straightforward.
Problem (6) can be optimized using multiplicative al-
gorithms, commonly used in the NMF context.

2.4 Robust non-negative projections

Let us now assume to be given a low dimensional
model, U ∈ Rm×q , learned from some data X ≈
US + O ∈ Rm×n. A new input vector x drawn from
the same distribution as X can be decomposed into
x = Us+n+o, where Us represents the low dimen-
sional component, n is a small perturbation, and o is
a sparse outlier vector. It can be obtained via

min
s≥0,o≥0

1
2 ‖x−Us− o‖22 + λ∗

2 ‖s‖
2
2 + λ ‖o‖1 ,(8)
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Figure 1. RNMF encoder architecture with T layers.

a convex problem similar to the one of standard sparse
coding. The solution can be obtained via proximal
methods [1], which split the objective function (8) into
a smooth part (the first two terms), and a non-differen-
tiable part (the `1 norm of the outliers vector). Proxi-
mal methods iterate between a gradient descent on the
smooth function and an application of the proximal
operator (which assumes a closed form of one-sided
soft-thresholding), as detailed in Algorithm 1. This
algorithm is conceptually very similar to the popular
iterative shrinkage and thresholding algorithm (ISTA)
[2]. We do not use this algorithm as an explicit tool,
but rather as a motivation of the architecture of a feed-
forward network capable of accurately performing the
separation in real time, as discussed next.

input : Data x, dictionary U.
output: Nonnegative coefficient vector s and

nonnegative outlier vector o.
Define

H = I− 1
α

(
UTU + λ∗I UT

U (1 + λ∗)I

)
,

W = 1
α

(
UT

I

)
, and t = λ

α

(
0
1

)
.

Initialize z = 0, b = Wx.
repeat

y = max{b− t, 0}
b = b + H(y − z)
z = y

until until convergence ;
Output (o, s) = z.
Algorithm 1: RNMF given the dictionary U.

3. FAST ROBUST SPARSE MODELING

To avoid the computational complexity inherent to ex-
act sparse coding algorithms, it has been recently pro-
posed to learn non-linear regressors capable of pro-
ducing good approximations in a fixed amount of time
[6,10]. We follow these ideas to obtain encoders capa-
ble of efficiently approximating the solution of RPCA
and RNMF. 1 We first discuss the general framework
and then describe specific uses.

1 Due to space constraints, we show details only for RNMF;
RPCA can be obtained by removing the non-negativity constraints
and modifying the proximal operator.
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We aim at constructing a parametric regressor z =
(o, s) = h(x,Θ), with some set of parameters, col-
lectively denoted as Θ, capable of accurately perform-
ing the singing voice separation for a given training
sample X = {x1, . . . ,xn}. Here, each xi represents
the magnitude spectrum of a mixture of voice and mu-
sic; training samples may come from many different
singers and songs.

As in [6], we design an architecture for the en-
coders based on an exact optimization algorithm, in
this case Algorithm 1. We propose a multi-layer ar-
tificial neural networks where each layer implements
a single iteration of the algorithm, as depicted in Fig-
ure 1. The parameters of the network are the matrices
W and H and the thresholds t. 2 These encoder ar-
chitectures are continuous and almost everywhere C1
with respect to the parameters, allowing the use of
(sub)gradient descent methods for training.

We train the encoders by minimizing over X func-
tions of the form

L(Θ) =
1
|X |

∑
xi∈X

L(Θ,xi), (9)

where L(Θ,xi) is a function that measures the qual-
ity of the code zi = h(xi,Θ). Specifically, we itera-
tively select a random subset of X and then update the
network parameters as Θ ← Θ − µ∂L(Θ)

∂Θ , where µ
is a decaying step, repeating the process until conver-
gence. The decoder is just a linear operator given by a
dictionary U, see Figure 1.

Once trained, the parameters Θ and the dictionary
U are fixed, and the network is used to sequentially
process new data. The latency of both the RPCA and
RNMF networks (referred henceforth as NN RPCA
and NN RNMF, respectively) is of the order of a single
STFT frame (hundreds of milliseconds), while the ex-
act algorithms require the entire signal to be observed.

3.1 Training regimes

Training of the proposed RPCA and RNMF encoders
is possible under different regimes. We refer as su-
pervised to the setting where the training set consists
of the mixed signal xi = o∗i + l∗i , and the synchro-
nized ground truth voice and accompaniment signals
o∗i and l∗i (each vector corresponding to the magni-
tude spectrogram). In that case, we set L(Θ,xi) =
||Usi− l∗i ||22 + ||oi−o∗i ||22, with (oi, si) = h(xi,Θ).
For NN RPCA, the dictionary U is established using
SVD applied to the clean accompaniment samples, l∗i ,
while for NN RNMF, the non-negative dictionary U
is constructed running the multiplicative RNMF algo-
rithm on the training data.

2 In the network, extra flexibility is obtained by learning different
thresholds ti for each component.

Table 1. Performance on the recovered vocal track on
MIR-1K.

Method GNSDR GSNR GSAR GSIR
Ideal freq. mask 13.48 5.46 13.65 31.22
ADMoM RPCA [9] 5.00 2.38 6.68 13.76
Proximal RPCA 5.48 3.29 7.02 13.91
NN RPCA Untrained 5.30 2.66 6.80 13.00
NN RPCA Unsupervised 5.62 2.87 6.90 14.02
NN RPCA Supervised 6.38 3.18 7.22 16.47
NN RPCA Dict. update 6.42 3.19 7.23 16.57
Multiplicative RNMF 5.60 3.39 6.94 14.67
NN RNMF Untrained 1.62 0.00 5.85 5.13
NN RNMF Unsupervised 5.00 2.66 6.63 11.89
NN NMF Supervised 6.36 3.37 7.10 16.96
NN RNMF Dict. update 6.55 3.55 7.24 17.65

We refer as semi-supervised to the setting in which
isolated samples of voice and background are avail-
able, but are not synchronized (the xi are now either
the voice or the accompaniment). The training of the
network is performed in the same way as the super-
vised case, but setting to zero the missing source.

Finally, in the unsupervised setting we only have
access to mixtures as training data and the objective
L(Θ,xi) = 1

2‖xi−Usi− oi‖22 + λ∗
2 ‖si‖22 + λ‖oi‖1

is used to directly minimize the cost in (6).
Dictionary adaptation. The performance of both the
RPCA and RNMF networks can be further improved
if the dictionary U (decoder) is updated during the
training. In the unsupervised setting, for NN RPCA,
U is updated via gradient descent as before, while in
NN RNMF via the standard multiplicative update,

U ← U� YST

U(SST + λ∗I)
, (10)

where X = (x1, . . . ,xn) is the input matrix, S =
(s1, . . . , sn) is the matrix of the corresponding codes,
Y = (x1 − o1, . . . ,xn − on), and � and the fraction
denote, respectively, element-wise multiplication and
division. This update minimizes the objective in (6)
for fixed O and S, and is guaranteed to preserve the
non-negativity of U. Analogously, in the semi- and
fully-supervised scenarios, U can be updated by min-
imizing the corresponding L(Θ) using the ground-
truth music accompaniment. Again using gradient de-
scent and multiplicative updates for RPCA and RNMF
respectively.

4. EXPERIMENTAL RESULTS

Dataset. We evaluate the separation performance of
the proposed methods on the MIR-1K dataset [8], con-
taining 1000 16 kHz clips extracted from 110 Chinese
karaoke songs performed by 19 amateur singers (11
males and 8 females). Each clip duration ranges from
4 to 13 seconds, totaling about 133 minutes. We re-
served about 23 minutes of audio sang by one male
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Figure 2. Performance of the supervised NN RPCA and NN RNMF on the MIR-1K dataset for different number of layers T
(left, q fixed to 20), and values of the rank bound q (right, T fixed to 10). GNSDR of the recovered vocal track is used as the
comparison criterion. For reference, the performance of exact RPCA and RNMF is given.

and one female singers (abjones and amy) for the pur-
pose of training; the remaining 110 minutes of 17 sin-
gers were used for testing. The voice and the music
tracks were mixed linearly with equal energy.
Evaluation. As the evaluation criteria, we used the
BSS-EVAL metrics [20], which calculate the source-
to-distortion ratio (SDR), 3 the source-to-artifacts ra-
tio (SAR), and the source-to-interference ratio (SIR).
As in [9], we computed the global normalized SDR,

GNSDR =
N∑
i=1

δi(SDR(ŝ, s)− SDR(x, s)),

where ŝ and s are the corresponding original and esti-
mated voice signal, x is the mixture, δi is the relative
duration of each of the N testing pieces. Prefix “G”
indicates average sample performance,e.g. GSAR. We
also computed the signal-to-noise ratio (SNR).
Comparison of separation methods. We evaluated
the proposed NN RPCA and NN RNMF using the dif-
ferent training settings discussed in Section 3.1. In all
our examples (except when explicitly mentioned), we
used T = 10 layers and q = 20. We compare these re-
sult against three exact solvers: ADMoM RPCA solv-
ing (1) with λ = 1/

√
n (as suggested in [9]) via the

alternating direction method of multipliers [12], for
which the code from [9] was used; Proximal RPCA
solving (3) using the proximal method from [3], with
λ =

√
2nσ and λ∗ =

√
2σ with σ = 0.3 set follow-

ing [3]; and Multiplicative RNMF solving (6) using
the standard multiplicative algorithm.

In all experiments, the spectrogram of each mix-
ture was computed using a window size of 1024 and
a step size of 256 samples (at 16 KHz sampling rate).
Training was performed using 1000 safe-guarded gra-
dient descent iterations on a random subset of 10.000
spectral frames for training and the same amount of
distinct frames for cross-validation.

3 In this work the SDR is computed using the latest release of the
BSS-EVAL code. The reported values are higher (equally for all
algorithms) than the ones reported in [9], since they used the older
release of that package.

Table 1 summarizes the performance of the com-
pared methods. The best performance is achieved by
the NN RNMF with trained dictionary. The use of
the proximal RPCA algorithm allowing for inexact re-
construction of the data (thus accounting for unstruc-
tured noise) gives almost 0.5 dB improvement over
[9]. The use of unsupervised training was more suc-
cessful in the NN RPCA; however, both NN RPCA and
NN RNMF outperform ADMoM RPCA.

The complexity of the proposed systems is signif-
icantly lower to the one of exact algorithms: our un-
optimized Matlab code that uses GPU acceleration is
capable of computing the networks about 70 faster
than real time, while a preliminary implementation on
iPhone 4S is online and 6 − 7 times faster than real
time (after offline training).
Parameter selection. We also evaluated the perfor-
mance of the supervised RPCA and RNMF networks
as a function of the two principal parameters: the num-
ber of layers T and the rank bound q, see Figure 2.

Supervised learning has a dramatic effect on the
performance of the networks. With just two layers, the
RPCA network already outperforms the exact RPCA
algorithms; as a reference, an untrained network, with
the parameters W,H, and t set according to Algo-
rithm 1, requires over 15 layers to approach this per-
formance. This phenomenon is even more pronounced
in the case of RNMF. The influence of the number
of layers quickly saturates; slight oscillations in the
GNDSR are due to the randomization used at training.

In contrast, the effect of q is less dramatic. The
networks outperform the exact algorithms already for
q = 5 and the performance saturates for q ≥ 30.
This is radically different from the behavior of stan-
dard NMF approaches, in which setting the number
of columns in the non-negative factor U significantly
affects the performance. In fact, RNMF with λ∗ = 0
as [22] yields 5.60 dB GNSDR for q = 1, which drops
to 2.88 dB for q = 3 and to −2.5 dB for q = 10.
Supervised training settings. We evaluated the in-
fluence of the different training regimes on the perfor-
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Table 2. Performance of NN RNMF on the vocal trak of
Sunrise song. Audio files are available for download here

Method NSDR SNR SAR SIR
Ideal freq. mask 14.98 5.84 18.46 39.40
ADMoM RPCA [9] 1.61 2.99 11.13 6.60
Supervised (MIR-1K) 7.16 4.86 14.21 13.25
Supervised (We are in love) 7.85 5.47 15.35 13.59
Supervised (Sunrise) 10.93 5.67 16.16 19.20
Semi-supervised (We are in love) 7.35 4.69 11.39 20.01
Semi-supervised (Sunrise) 8.46 5.11 12.20 23.97

mance of the networks on Shannon Hurley’s song Sun-
rise, available from archive.org. The song was
resampled at 16 kHz and voice was artificially mixed
with the guitar accompaniment with equal energies.
Three distinct datasets were used for training the nets:
two singers from MIR-1K used in the previous experi-
ments; another Shannon Hurley’s song We are in love;
and the same Sunrise, song on which the testing was
performed (given only for comparison). Supervised
and semi-supervised regimes were used.

Table 2 summarizes the obtained results. RNMF
networks trained using mixtures from MIR-1K outper-
form [9] by nearly 5.5 dB GNSDR; training on more
singer-specific data (We are in love song) improves
this result by about 0.7 dB. ; finally, training on a mix-
ture from the same song yields over 3.5 dB improve-
ment. We conclude that training the networks on un-
related singers and accompaniments already achieves
very high performance. Semi-supervised training on
the We are in love song yields a minor improvement
over MIR-1K, and cedes 0.5 dB to the fully-supervised
training. We conclude that in the absence of synchro-
nized voice and music tracks for supervised training,
semi-supervised training still produces comparable re-
sults.

5. CONCLUSION

Marrying ideas from convex optimization with multi-
layer neural networks, we have developed efficient ar-
chitectures for real-time online single-channel sepa-
ration of singing voice from musical accompaniment.
Our approach achieves state-of-the-art results on the
MIR-1K datasets with orders of magnitude improve-
ment in runtime and latency. In future work, we are
going to extend this framework to denoising and si-
multaneous separation and speaker identification.
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