
POLYPHONIC MUSIC CLASSIFICATION ON SYMBOLIC DATA USING
DISSIMILARITY FUNCTIONS

Yoko Anan, Kohei Hatano, Hideo Bannai, Masayuki Takeda
Department of Informatics, Kyushu University

{yoko.anan, hatano, bannai, takeda}@inf.kyushu-u.ac.jp

Ken Satoh
National Institute of Informatics

ksatoh@nii.ac.jp

ABSTRACT

This paper addresses the polyphonic music classification
problem on symbolic data. A new method is proposed
which converts music pieces into binary chroma vector se-
quences and then classifies them by applying the dissimilarity-
based classification method TWIST proposed in our previ-
ous work. One advantage of using TWIST is that it works
with any dissimilarity measure. Computational experiments
show that the proposed method drastically outperforms SVM
and k-NN, the state-of-the-art classification methods.

1. INTRODUCTION

Classification of music is one of the most fundamental prob-
lems in music information retrieval research and has been
studied extensively (e.g., [4, 5, 7, 19, 20, 25, 28]). Music is
usually polyphonic in the sense that more than one tone
sounds simultaneously and thus a single time interval is
made up of two or more simultaneous tones. Classifying
polyphonic music pieces seems to be more difficult than
classifying monophonic music pieces.

The difficulty in classifying polyphonic music stems from
two issues. The first issue is in determining what kind of
information needs to be extracted from polyphonic music.
Many previous research (e.g., [13, 18]) reduce the classifi-
cation problem of polyphonic music to that of monophonic
music by converting the data in some way. For example,
the so-called skyline method converts polyphonic music to
monophonic music by choosing the highest pitches among
multiple pitches. This approach is effective to an extent,
but it does not fully exploit the information which can be
obtained from multiple pitches.

The second issue is how to classify the preprocessed
data. A major approach of machine learning techniques
is to represent data as feature vectors and then applying
learning algorithms. There are several known features such
as performance worm [9], performance alphabet [26] and
others [4, 19, 20, 28]. Then, it is non-trivial to construct ef-
fective features from data, since such construction requires
much human resource such as experts’ knowledge. If we

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2012 International Society for Music Information Retrieval.

employ kernel-based machine learning approaches such as
SVM (e.g., [15–17, 21, 29]), we can avoid the problem
of explicitly constructing features by using kernels since
kernels implicitly define features. However, the kernel-
based has a limitation that the kernel must be positive-
semidefinite. Therefore many popular (dis)similarity mea-
sures such as the edit distance is not applicable since they
are not proved to be positive-semidefinite.

In this paper, we propose a new method for classify-
ing polyphonic music, which is a combination of poly-
phonic music preprocessing and classification techniques.
For preprocessing data, our method employs chroma vec-
tor representation which is popular for audio data (e.g., [3]).
Unlike previous approaches such as the skyline method,
we preprocess the data so that information contained in
the original data is kept as much as possible. An advan-
tage of the chosen approach is that it captures concurrent
behavior of pitches by encoding them into a new set of
strings, and therefore, can extract more information from
polyphonic music data than the monophonic music reduc-
tion approach.

For classification, we propose a multi-class version of
our classification method named TWIST (Tug-of-War be-
tween Instances by Soft margin optimization Technique)
proposed in [2]. TWIST is based on the theory of Wang et
al. [31] for learning with (dis)similarity functions. The the-
ory guarantees that under some mild assumptions, the final
classifier constructed from dissimilarity functions is accu-
rate enough for future data. Further, TWIST can use any
dissimilarity function which might not be positive semi-
definite.

By combining the two approaches described above, we
significantly outperform the state-of-the-art methods such
as k-nearest neighbor (k-NN) and SVM with string kernels
for composer classification tasks of classical piano music
and Japanese POP music given in MIDI format.

2. OUTLINE OF OUR METHOD

In this section, we explain the outline of our method. Our
method consists of two parts: (i) First of all, we convert
polyphonic music data into binary chroma sequences. In
our experiments, the original polyphonic data is given as
MIDI data. (ii) Next, given labeled binary chroma se-
quences and a dissimilarity function which measures the
discrepancy between them, we use a multi-class version of
TWIST to learn a classifier. The details are given in Sec-



tion 3.

3. QUANTIFYING DISSIMILARITY BETWEEN
MUSIC PIECES

The key to successfully using TWIST is in choosing how
to quantify dissimilarity between music pieces. We con-
sider dissimilarity measures d that are combinations of a
preprocessing p of music pieces into particular sequential
representation, and a string dissimilarity measure δ. That
is, d is given by d(x, y) = δ(p(x), p(y)), where x, y are
music pieces.

One popular sequential representation of polyphonic mu-
sic is the chroma vector sequence representation. A chroma
vector is a twelve-element vector with each dimension rep-
resenting the intensity in a very short time interval, as-
sociated with a particular semitone regardless of octave.
Chroma vectors model important aspect of music audio
and have been widely used in music retrieval [22, 23], mu-
sic classification [1, 10], and several other applications in
music information processing [24].

On the other hand, many string (dis)similarity measures
have been proposed, such as the edit distance [30], the
longest common subsequence (LCS) length [14], the nor-
malized compression distance (NCD) [6], which are used
in many applications such as automatic spelling correc-
tion, information retrieval, gene information analysis and
so on. String kernels such as the n-gram kernel [16], the
mismatch kernel [15], the subsequence kernel [21] are also
string similarity measures.

Consider applying such a string similarity measure to
music pieces that are given in the form of sequences of
binary chroma vectors (or pitch sets). A naive approach
would be to use the so-called skyline method, where the
highest pitch is chosen among multiple pitches in each time
interval. It is essentially a reduction to monophonic music
processing.

Another approach is a direct computation of dissimilar-
ity regarding the binary chroma vectors as just symbols.
There are 212 = 4096 symbols. For the edit distance, we
have to define the weights associated with edit operations,
namely, the weight w(a, ε) of deleting a and the weight
w(ε, a) of inserting a for any symbol a, and the weight
w(a, b) of replacing a with b for any distinct symbol pair
(a, b). The simplest way is to use the unit weight func-
tion such that w(a, ε) = w(ε, a) = 1 for any symbol a
and w(a, b) = 1 for any distinct symbol pair (a, b) 1 . An-
other possible way would be to set w(a, b) = 1 − θ(a, b)
where θ(a, b) is the angle between the vectors a and b for
any distinct symbol pair (a, b), and w(a, ε) = w(ε, a) = 1
for any symbol a. An alternative way is to quantify resem-
blance between chroma vectors based on musical knowl-
edge. Harte et al. [12] proposed such a method: It converts
12-dim. binary chroma vectors into 6-dim. real-valued vec-
tors, called the tonal centroid vectors (TC vectors in short).
They claim in [12] that close harmonic relations such as
fifths and thirds appear as small Euclidian distances. Thus

1 The edit distance with this weight function is often called the Leven-
shtein distance.

the Euclidian distance of two TC vectors or the cosine of
the angle between them could be a good dissimilarity (sim-
ilarity) measure between original chroma vectors.

Using TC vector conversion Ahonen et al. [1] took an-
other approach. The component values of TC vectors are
quantized to 0 or 1 to produce 6-dim. binary vectors, which
we call the binary TC vectors. The resulting sequences are
thus strings over an alphabet of size 64, and NCD with
bzip2/PPMZ is used to quantify their dissimilarity.

In Section 5 we compare by computational experiments
the performance of all combinations of sequential repre-
sentation and (dis)similarity measure mentioned above.

4. CLASSIFICATION METHOD

In this section, we briefly sketch TWIST [2] which is de-
signed for binary classification. Then we show how to ex-
tend TWIST for multi-class classification tasks.

4.1 binary classification

TWIST employs a dissimilarity-based learning framework
of [31], which we call TW (Tug-of-War). We first explain
the TW framework below.

Let X be the instance space. We call a pair (x, y) of
instance x ∈ X and label y ∈ {−1, 1} an example. Sup-
pose that we are given p positive examples (x+

1 , +1) . . . ,
(x+

p , +1) and n negative examples (x−
1 ,−1), . . . , (x−

n ,−1).
We are also given a dissimilarity function d(x, x′) is a
function from X × X to R+.

For each pair of positive instance x+
i and negative in-

stance x−
j (i = 1, . . . , p, j = 1, . . . , n), we define the base

classifier hi,j : X → {−1, +1} as follows:

hij(x) = sgn(d(x−
j , x) − d(x+

i , x)),

where sgn(a) = 1 if a > 0 and −1 otherwise. The base
classifier hij classifies an instance x as positive if x is more
dissimilar to the negative instance x−

j than the positive in-
stance x+

i (in other words, x is more similar to x+
i than

x−
j ) and it classifies an instance x as negative, otherwise.

The behavior of the base classifier seems like a tug-of-war,
which is why we call the framework TW. In the TW frame-
work, the final classifier is a weighted voting of base clas-
sifiers,

sgn[
p∑

i=1

n∑
j=1

wijhij(x)]

for some weights wijs. TW has a theoretical guarantee
that, under some natural assumptions, there exist weights
such that the associated final classifier is accurate enough
for future instances. A heuristics is used to determine weights
in the original paper [31].

Our previous work [2] uses a more robust method for
finding weights than the above mentioned heuristics. We
named the method of [2] TWIST, which is an abbreviation
of “Tug-of-War of Instances by Soft margin optimization
Technique”. TWIST employs the 1-norm soft margin opti-
mization to determine weights wijs. The 1-norm soft mar-
gin optimization is a standard formulation of classification



problems in Machine Learning (see, e.g., [8, 32]), which
is known to provide a robust classifier. In our case, the
1-norm soft margin optimization is formulated as follows:

max
ρ,b,w,ξ+,ξ−

ρ − 1
ν

p∑
k=1

ξ+
k − 1

ν

n∑
k=1

ξ−k (1)

sub.to
p∑

i=1

n∑
j=1

wijhij(x+
k ) + b) ≥ ρ − ξ+

k (k = 1, . . . , p),

−
p∑

i=1

n∑
j=1

wijhij(x−
k ) + b) ≥ ρ − ξ−k (k = 1, . . . , n),

w ≥ 0,

p∑
i=1

n∑
j=1

wij = 1, ξ+, ξ− ≥ 0,

where each yk is +1 or −1. An additional advantage of 1-
norm soft margin optimization is that the resulting weights
are likely to be sparse since we regularize 1-norm of the
weights This property is also useful for feature selection
tasks.

4.2 multi-class classification

We explain how to extend TWIST for multi-class classi-
fication. We employ the standard reduction method from
multi-class to binary classification, one-versus-rest. The
one-versus-rest method solves K-class classification by re-
ducing it to K binary classification problems. For each
class k (1 ≤ k ≤ K), the associated binary classification
problem is constructed by assuming the label k is positive
and other labels are negative. Then a learning algorithm is
applied for each binary classification problem and it out-
puts the classifier hk : X → R for each class k. The final
classifier of the one-versus-rest method is given as

arg max
k=1,...,K

hk(x).

5. COMPUTATIONAL EXPERIMENT

We evaluated the performance of TWIST in composer clas-
sification of music pieces in comparison to those of the
classification methods k-NN and SVM. A suitable dataset
should contain enough number of music pieces for each
composer, and the pieces for all composers have roughly
the same conditions (the length, genre, instrument, etc. of
the piece). Although various MIDI datasets are publicly
available, datasets suitable for composer classification are
rare. For example, the classical music dataset of the RWC
Music Database 2 consists of 50 pieces written by 24 com-
posers, only 2.08 pieces for each composer on the average.

The following datasets were available for our experi-
ments:

Classical. The set of classical music MIDI files described
in [27]. It consists of 5 sets of 25 pieces of keyboard

2 http://staff.aist.go.jp/m.goto/RWC-MDB/

music, written by Bach, Beethoven, Chopin, Mozart
and Schumann, respectively.

JPOP. A set of Japanese POP (JPOP) music MIDI files for
KARAOKE downloaded from a commercial site by
YAMAHA. It consists of 5 sets of 25 pieces of JPOP,
written by 5 composers (Tomoyasu Hotei, Tetsuya
Komuro, Keisuke Kuwata, Takahiro Matsumoto, Kazu-
masa Oda).

From the MIDI files, we removed the MIDI events other
than the NOTE ON/OFF events and quantized the NOTE
ON/OFF times with unit time corresponding to the six-
teenth note length. The tracks/channels of the MIDI files
can then be viewed as sequences of sets of pitches that are
“ON” in respective unit time intervals. Each MIDI file in
Classical consists of two tracks, corresponding to the left
and right hand parts. We extracted two pitch-set sequences
and merged them into a single sequence. Each MIDI file
in JPOP consists of a single track with several channels.
We chose the channel 0 corresponding to main melody part
and obtained a single pitch-set sequence from the channel.
We then converted the obtained pitch-set sequences into (a)
highest-pitch strings, (b) binary chroma vector sequences,
and (c) binary TC vector sequences.

For quantifying dissimilarities between sequences, we
adopted several (dis)similarity measures between strings.
For TWIST, SVM and k-NN, we used the following two
string kernels: n-gram kernel with parameters n = 2, 5, 10
and mismatch kernel with parameters n = 5, 10 and m =
1, 2, where m is the maximum number of errors allowed.
For TWIST and k-NN, we also used the following (dis)simi-
larity measures: edit distance, LCS, and NCD with com-
pression programs gzip and bzip2.

For the edit distance between binary chroma vector se-
quences, we used the symbol-pair weight functions w of
the three types: (i) the unit weight (w(a, b) = 1 if a 6= b
and w(a, b) = 0 if a = b); (ii) w(a, b) = 1 − cos θ(a, b)
for binary chroma vectors a, b; and (iii) w(a, b) = 1 −
cos θ(a′, b′) for TC vectors a′, b′ of binary chroma vec-
tors a, b. For highest-pitch strings and binary TC vectors,
we used only the unit weight. We used the cosine val-
ues for (ii) and (iii) in the case of LCS. We note that the
compression programs gzip and bzip2 used in NCD
take data files of byte-sequences as input. We encoded the
highest-pitch strings as one-byte-integer sequences, wrote
them into data files and then applied the compressors to the
files. For binary chroma vector sequences, we wrote them
as data files of two-byte-integer sequences to be processed
in a byte-wise manner by the compressors.

We evaluated the three classification methods by per-
forming 5-fold cross validation. We used the values 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 for the parameter ν of the 1-norm soft
margin optimization formulation (1). For SVM, we used
the ν-SVM implementation of LIBSVM (version 3.11) [11].
The values 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 for the parameter ν
were used. For k-NN, we used k = 1, 3, 5. Accuracies
are obtained using the best value of ν for each method and
each (dis) similarity measure.



Table 1. Comparison of classification accuracy for dataset Classical (in %).

(a) highest-pitch strings.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 70.40 78.40 80.80 84.80 76.00 77.60 72.80 72.80 81.60 79.20 75.20
1-NN 52.80 20.00 51.20 41.60 16.00 20.00 12.00 19.20 18.40 12.00 13.60
3-NN 60.00 18.40 62.40 48.00 17.60 41.60 44.80 28.00 19.20 46.40 39.20
5-NN 51.20 24.80 56.00 39.20 33.60 27.20 32.00 36.00 34.40 31.20 30.40
SVM N/A N/A N/A N/A 51.20 44.00 24.80 52.00 52.80 26.40 29.60

(b) binary chroma vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

weight weight
bzip2 gzip n = 2 n = 5 n = 10

n = 5 n = 10
unit cosine TC unit cosine TC m = 1 m = 2 m = 1 m = 2

TWIST 80.00 70.40 72.00 81.60 77.60 77.60 91.20 92.00 80.00 70.40 49.60 74.40 73.60 61.60 67.20
1-NN 46.40 50.40 44.80 29.60 30.40 27.20 63.20 53.60 20.00 22.40 24.00 20.80 21.60 18.40 17.60
3-NN 35.20 43.20 38.40 25.60 28.80 24.00 68.00 63.20 16.80 4.80 8.00 10.40 16.80 4.80 4.80
5-NN 25.60 40.00 37.60 23.20 23.20 21.60 65.60 56.00 25.60 1.60 9.60 3.20 11.20 4.80 4.00
SVM N/A N/A N/A N/A N/A N/A N/A N/A 57.60 40.00 24.80 44.80 51.20 24.00 23.20

(c) binary TC vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 76.00 78.40 85.60 88.80 78.40 70.40 59.20 72.00 73.60 64.80 67.20
1-NN 42.40 28.00 56.00 59.20 20.00 20.00 17.60 19.20 19.20 16.00 17.60
3-NN 32.00 25.60 64.80 65.60 18.40 18.40 17.60 18.40 18.40 15.20 16.00
5-NN 28.00 25.60 57.60 52.00 22.40 1.60 6.40 3.20 12.00 1.60 0.80
SVM N/A N/A N/A N/A 58.40 46.40 25.60 52.00 54.40 25.60 29.60

The experimental results for Classical are summarized
in Table 1. TWIST drastically outperforms the other clas-
sification methods in all combinations of sequential repre-
sentation and (dis)similarity measure. TWIST shows the
best accuracy when used with combination of the binary
chroma vector sequence representation and NCD with gzip.

The experimental results for JPOP are summarized in
Table 2. Again, TWIST defeats the other classification
methods in most combinations of sequential representa-
tions and (dis)similarity measures. This time TWIST us-
ing NCD with bzip2 shows good accuracies. In fact the
best and the second best are achieved by NCD with bzip2
combined with the highest-pitch strings and with the bi-
nary chroma vector sequence representations, respectively.

Now we discuss the effects of preprocessing for clas-
sification of JPOP and Classical. For JPOP, the classi-
fication accuracy with highest-pitch strings is better than
that with chroma vector sequences. This might be due
to the fact that JPOP is almost like monophonic music.
More precisely, each music of JPOP is characterized with
highest-pitch sequence mostly corresponding to the lead
vocal line. On the other hand, each piano music of Clas-
sical is characterized with a succession of simultaneously
sounding pitches. Therefore, chroma vector representation

is more advantageous for classification of polyphonic mu-
sic since the representation keeps more information in the
original music.

6. CONCLUSION

In this paper we proposed a polyphonic music classifica-
tion method as a combination of way of quantifying affin-
ity between music pieces and the classification technique
TWIST [2]. The method converts given music data into
binary chroma vector sequences, and builds a classifier
based on the similarity values between the sequences (or
their converted sequences) using a string similarity mea-
sure. One advantage is that TWIST works with any simi-
larity measure, not necessarily to be positive semidefinite.
The results of computational experiments with classical
music and Japanese POP music show that TWIST dras-
tically outperforms the well-known classification methods
k-NN and SVM with string kernels in all combinations of
sequential representation and similarity measure.

Although the computational experiments were carried
out on MIDI files, our classification method can, in the-
ory, be applied to audio files, provided that an appropriate
function that quantifies affinity between music audio data



Table 2. Comparison of classification accuracy for dataset JPOP (in %).

(a) highest-pitch strings.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 78.40 80.80 86.40 73.60 38.40 31.20 39.20 28.80 48.80 26.40 28.00
1-NN 26.40 21.60 33.60 27.20 19.20 19.20 19.20 19.20 19.20 19.20 19.20
3-NN 37.60 45.60 58.40 44.00 58.40 58.40 20.00 20.00 58.40 58.40 20.00
5-NN 34.40 42.40 43.20 40.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00
SVM N/A N/A N/A N/A 35.20 25.60 17.60 25.60 36.00 17.60 19.20

(b) binary chroma vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

weight weight
bzip2 gzip n = 2 n = 5 n = 10

n = 5 n = 10
unit cosine TC unit cosine TC m = 1 m = 2 m = 1 m = 2

TWIST 80.00 83.20 83.20 76.80 81.60 81.60 84.80 79.20 60.80 48.80 28.80 44.00 50.40 36.00 34.40
1-NN 31.20 30.40 34.40 27.20 27.20 30.40 35.20 30.40 19.20 19.20 19.20 19.20 19.20 19.20 19.20
3-NN 44.80 44.80 49.60 53.60 53.60 55.20 51.20 44.80 57.60 56.80 58.40 58.40 49.60 57.60 58.40
5-NN 41.60 41.60 46.40 46.40 46.40 32.80 48.80 40.00 19.20 20.00 20.00 20.00 27.20 20.00 20.00
SVM N/A N/A N/A N/A N/A N/A N/A N/A 40.80 40.00 32.00 40.80 40.80 33.60 36.00

(c) binary TC vector sequences.
edit distance LCS NCD n-gram kernel mismatch kernel

unit weight unit weight bzip2 gzip n = 2 n = 5 n = 10
n = 5 n = 10

m = 1 m = 2 m = 1 m = 2
TWIST 72.80 83.20 79.20 80.80 56.00 38.40 40.00 45.60 42.40 28.80 37.60
1-NN 28.80 28.00 31.20 30.40 19.20 19.20 19.20 19.20 19.20 19.20 19.20
3-NN 44.00 55.20 48.80 55.20 57.60 56.00 58.40 58.40 42.40 57.60 58.40
5-NN 44.00 48.00 45.60 40.00 20.00 21.60 20.00 20.00 27.20 20.00 20.00
SVM N/A N/A N/A N/A 38.40 39.20 32.00 41.60 43.20 33.60 36.00

is available. A future work is to develop such a function
for music audio data.

7. ACKNOWLEDGMENTS

We thank anonymous referees for helpful comments and
suggestions.

8. REFERENCES

[1] Teppo E. Ahonen, Kjell Lemström, and Simo Linkola.
Compression-based similarity measures in symbolic,
polyphonic music. In Proceedings of the 12th Interna-
tional Symposium on Music Information Retrieval (IS-
MIR’11), pages 91–96, 2011.

[2] Yoko Anan, Kohei Hatano, Hideo Bannai, and
Masayuki Takeda. Music genre classification using
similarity functions. In Proceedings of the 12th Inter-
national Symposium on Music Information Retrieval
(ISMIR’11), pages 693–698, 2011.

[3] Mark A. Bartsch and Gregory H. Wakefield. Audio
thumbnailing of popular music using chroma-based

representations. IEEE Transactions on Multimedia,
7(1):96–104, 2005.

[4] James Bergstra, Norman Casagrande, Dumitru Erhan,
Douglas Eck, and Balázs Kégl. Aggregate features and
AdaBoost for music classification. Machine Learning,
65:473–484, 2006.

[5] Rudi Cilibrasi, Paul Vitányi, and Ronald de Wolf. Al-
gorithmic clustering of music based on string compres-
sion. Computer Music Journal, 28(4):49–67, 2004.

[6] Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by
compression. IEEE Transactions on Information The-
ory, 51:1523–1545, 2005.

[7] Christopher DeCoro, Zafer Barutcuoglu, and Re-
becca Fiebrink. Bayesian aggregation for hierarchical
genre classification. In Proceedings of the 8th Interna-
tional Conference on Music Information Retrieval (IS-
MIR’07), pages 77–80, 2007.

[8] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-
Taylor. Linear programming boosting via column gen-
eration. Machine Learning, 46(1-3):225–254, 2002.



[9] Simon Dixon, Werner Goebl, and Gerhard Widmer.
The performance worm: Real time visualisation of ex-
pression based on langner’s tempo-loudness animation.
In Proceedings of the International Computer Music
Conference (ICMC’02), pages 361–364, 2002.

[10] Daniel P. W. Ellis. Classifying music audio with tim-
bral and chroma features. In Proceedings of the 8th
International Conference on Music Information Re-
trieval (ISMIR ’07), pages 339–340, 2007.

[11] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin.
Working set selection using second order information
for training support vector machines. Journal of Ma-
chine Learning Research, 6:1889–1918, 2005.

[12] Christopher Harte, Mark Sandler, and Martin Gasser.
Detecting harmonic change in musical audio. In Pro-
ceedings of 1st ACM Workshop on Audio and Music
Computing Multimedia (AMCMM’06), pages 21–26,
2006.

[13] Ruben Hillewaere, Bernard Manderick, and Darrell
Conklin. String quartet classification with monophonic
models. In Proceedings of the 11th International Soci-
ety for Music Information Retrieval (ISMIR ’10), pages
537–542, 2010.

[14] D.S. Hirschberg. A linear space algorithm for comput-
ing maximal common subsequences. Communications
of the ACM, 18(6):341–343, 1975.

[15] Christina S. Leslie, Eleazar Eskin, Adiel Cohen, Jason
Weston, and William Stafford Noble. Mismatch string
kernels for discriminative protein classification. Bioin-
formatics, 20(4):467–476, 2004.

[16] Christina S. Leslie, Eleazar Eskin, and
William Stafford Noble. The spectrum kernel: a
string kernel for SVM protein classification. In Pro-
ceedings of the Pacific Symposium on Biocomputing
(PSB’02), pages 566–575, 2002.

[17] Christina S. Leslie and Rui Kang. Fast string kernels
using inexact matching for protein sequences. Journal
of Machine Learning Research, 5:1435–1455, 2004.

[18] Ming Li and Ronan Sleep. Melody classification using
a similarity metric based on Kolmogorov complexity.
In Sound and Music Computing, pages 126–129, 2004.

[19] Thomas Lidy and Andreas Rauber. Evaluation of fea-
ture extractors and psycho-acoustic transformations for
music genre classification. In Proceedings of the 6th
International Conference on Music Information Re-
trieval (ISMIR’05), pages 34–41, 2005.

[20] Thomas Lidy, Andreas Rauber, Antonio Pertusa, and
José Manuel Iñesta. Improving genre classification by
combination of audio and symbolic descriptors using
a transcription system. In Proceedings of 8th Interna-
tional Conference on Music Information Retrieval (IS-
MIR’07), pages 61–66, 2007.

[21] Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, Chris Watkins, and Bernhard
Scholkopf. Text classification using string kernels.
Journal of Machine Learning Research, 2:563–569,
2002.

[22] Riccardo Miotto and Nicola Orio. A music identifica-
tion system based on chroma indexing and statistical
modeling. In Proceedings of the 9th International Soci-
ety for Music Information Retrieval (ISMIR ’08), pages
301–306, 2008.

[23] Meinard Müller, Frank Kurth, and Michael Clausen.
Audio matching via chroma-based statistical features.
In Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR ’05), pages 288–
295, 2005.

[24] Laurent Oudre, Yves Grenier, and Cédric Févotte.
Chord recognition by fitting rescaled chroma vectors to
chord templates. IEEE Transactions on Audio, Speech
and Language Processing, 19(7):2222 – 2233, 2011.

[25] Carlos Pérez-Sancho, David Rizo, and José
Manuel Iñesta Quereda. Genre classification using
chords and stochastic language models. Connection
Science, 21:145–159, 2009.

[26] Craig Saunders, David R. Hardoon, John Shawe-taylor,
and Gerhard Widmer. Using string kernels to identify
famous performers from their playing style. In Pro-
ceedings of the 15th European Conference on Machine
Learning (ECML’04), pages 384–395, 2004.

[27] Takuya Sawada and Ken Satoh. Composer classifica-
tion based on patterns of short note sequences. In Pro-
ceedings of the AAAI-2000 Workshop on AI and Music,
pages 24–27, 2000.

[28] George Tzanetakis, Georg Essl, and Perry Cook. Au-
tomatic musical genre classification of audio signals.
In Proceedings of the 2nd International Symposium on
Music Information Retrieval (ISMIR’01), pages 293–
302, 2001.

[29] S. V. N. Vishwanathan and Alexander J. Smola. Fast
kernels for string and tree matching. In Advances on
Neural Information Processing Systems 15, pages 569–
576, 2002.

[30] Robert A. Wagner and Michael J. Fischer. The string-
to-string correction problem. Journal of the ACM,
21(1):168–173, 1974.

[31] Liwei Wang, Masashi Sugiyama, Cheng Yang, Kohei
Hatano, and Jufu Feng. Theory and algorithm for learn-
ing with dissimilarity functions. Neural Computation,
21(5):1459–1484, 2009.

[32] Manfred K. Warmuth, Karen Glocer, and Gunnar
Rätsch. Boosting algorithms for maximizing the soft
margin. In Advances in Neural Information Processing
Systems 20 (NIPS’08), pages 1585–1592, 2008.


	Papers

	Poster Session 2
	POLYPHONIC MUSIC CLASSIFICATION ON SYMBOLIC DATA USING 
DISSIMILARITY FUNCTIONS



